Eudoxus (Knidos, yaklaşık MÖ 408 – yaklaşık MÖ 347)
Knidos’lu Eudoxus, M.Ö. 408 yılında Knidos’da doğmuştur.( Knidos Muğla’nın Datça ilçesinin en batı ucudur.) Knidos’lu Eudoxus, birçok bilgin gibi, gençliğinde çok fakirlik çekmiş biridir. Eudoxus orantılar kuramıyla Yunan matematiğini zirveye ulaştırmıştır.
Eudoxus, genç yaşlarında Tarentum şehrinden Atina’ya gitmiş, Platon’un öğrencisi olmuş ve orada en iyi ve birinci sınıf matematikçi, idareci ve asker olan Arkitas’ın (İ.Ö. 428-347) yanında öğrenim görmüştür. Atina’dayken kalmış olduğu yer çok uzak olmasına rağmen, derslere yürüyerek gidip geldiği söylenmektedir. Eudoxus, Atina’da sevilmediğini anlayınca, burayı terkederek, bugünkü Kapıdağı Yarımadasında bulunan Sızık şehrine gelerek burada tıp öğrenimi yapmıştır. Matematik dışında iyi bir hukukçu ve bir de iyi bir doktordu.
Bir ara Mısır’da bulunmuş ve Mısır geleneklerine uyarak sakalını ve kaşlarını traş etmiştir. Dersler vererek geçimini sağlamış ve Atina’ya dönüşünde, hocası Platon, onun şerefine bir şölen düzenlemiştir. Hemşehrileri olan Knidosluların idâri kanunlarını düzenlemek amacıyla Knidos’a gittiğinde, çok iyi karşılanmış ve çok büyük bir saygı görmüştür.
Ciddi astromi çalışmalarıyla da ünlüdür. İlme çok büyük katkılarda bulunmuştur. Zamanının birçoğunu söylevler vermek ve felsefe yaparak geçirmiştir. Çağdaşlarına göre, ilmi yönüyle ve ilmi düşünceleriyle, birkaç yüzyıl ileridedir. Galile ve Newton gibi, gözleme ve deneye dayanmayan fikir, düşünce ve görüşleri hoş görmemiş ve inanmamıştır.
Yeni keşfedilmiş olan bir uzunluk veya buna karşılık gelen sayı bir tam sayı değildi ve tam sayıların oranı ile ifade edilemiyordu; bu durum, felsefelerini tam sayılar üzerine kuran Pythagorasçıları son derece rahatsız etmişti; ya aritmetikle geometri arasındaki koşutluğu reddedecekler veya irrasyonel sayıların varlığını kabul edeceklerdi. Doğru olan yapıldı ve sayı kavramı irrasyonel sayıları da içine alacak şekilde genişletildi. Bu işlem aslen bir Pythagorasçı olan Eudoxos tarafından gerçekleştirildi. Eudoxos, daha sonra Eukleides’in Elementler adlı yapıtının V. ve VI. Kitap’larında işlenecek olan genel oranlar kuramı ile sayı kavramına yeni bir içerik kazandırdı.
Bir doğrunun orta orana göre bölünmesine Altın Oran veya Kutsal Oran denir; Yunanlılar, Eudoxos’un bulmuş olduğu altın oranın bir güzelliği ve kutsallığı olduğuna inanırlardı. İrrasyonellerin anlamlandırılması kadar güç olan diğer bir sorun da eğrilerle sınırlanmış olan alanların veya hacimlerin bulunması sorunuydu. Eudoxos, bu sorunu çözmek için, günümüzde tüketme yöntemi denilen yöntemi geliştirmişti.
Bu yöntemle, bilinen bir büyüklüğün, mesela bir doğrunun uzunluğunun, bir bilinmeyenin, mesela bir eğrinin niteliklerine iyice yaklaşıncaya kadar kendi içinde nasıl bölünebileceğini göstermişti. Archimedes’e göre, Eudoxos, piramitlerin ve konilerin hacimlerinin, sırasıyla eşit tabanlı ve eşit yükseklikli prizmaların ve silindirlerin hacimlerinin üçte birine eşit olduğunu kanıtlamak için bu yöntemden yararlanmıştı.
Eudoxus alan, hacim ve bazı cisimlerin yüzölçümlerini bulmuş ve bunlar hakkında birçok teoremin ispatını vermiştir. Gezegenlerin görünen hareketlerini açıklamış ve bu hareketlerinin dairesel olduklarını söylemiştir. Güneş saatini bulan, bir yılın 365 gün 6 saat olduğunu ortaya koyan ilk bilim adamıdır.
Ayrıca Eudoxos, dairelerin alanlarının, çaplarının karesiyle orantılı olduğunu da göstermişti; uygulamış olduğu yöntem bir bakıma, bir dairenin alanını bulmak için, bu dairenin içine çok sayıda çokgen yerleştirme işlemine benziyordu. Eğrilerle sınırlandırılmış geometrik biçimlerin alanlarının ve hacimlerinin hesaplanmasını olanaklı kılan ve daha sonra Eukleides’in Elementler’inin VII. Kitab’ında derinlemesine geliştirilen bu tüketme yöntemi, integral hesabının temeli olarak kabul edilmektedir.
Eudoxos, kurmuş olduğu ortak merkezli küreler sistemi ile bilimsel astronominin öncülüğünü yapmıştır. Uzun bir süre Mısır’da kalmış olduğu için Mısır astronomisinin inceliklerini, buradayken öğrenmiş olduğu düşünülebilir. Mezopotamya bölgesine ve İran’a gitmemiştir; ancak çeşitli milletlerden insanların toplanmış olduğu Knidos’ta Asya bilimine de âşina olması olanaklıdır.
Bugün matematikte kullandığımız ve adına Archimedes aksiyomu dediğimiz aksiyomu yine Eudoxus’a borçluyuz. Bu da onun ünlü orantılı doğrular kuramıdır. İki doğru parçası veya iki sayı verildiğinde, en küçüğünün her zaman en büyüğünü kapsayan bir tam katı vardır. Bu aksiyom, matematik tarihinde uzun yıllar matematik çağlarının konusu olmuştur.
Mısır’dayken Heliopolis rahiplerinden bilgiler edinmiş ve Heliopolis ile Cercesura arasında bulunan bir gözlemevinde gözlemler yapmıştır. Augustus döneminde bu gözlemevinin etkinliklerini sürdürmekte olduğu bilinmektedir. Eudoxos’un da Knidos’ta bir gözlemevi kurduğu ve burada gözlemler yaptığı söylenmektedir. Hiparkos’un ona atfettiği Ayna ve Phaenomena adlı yapıtlarında bu gözlemleri toplamıştır.
Eudoxus, genç yaşlarında Tarentum şehrinden Atina’ya gitmiş, Platon’un öğrencisi olmuş ve orada en iyi ve birinci sınıf matematikçi, idareci ve asker olan Arkitas’ın (İ.Ö. 428-347) yanında öğrenim görmüştür. Atina’dayken kalmış olduğu yer çok uzak olmasına rağmen, derslere yürüyerek gidip geldiği söylenmektedir. Eudoxus, Atina’da sevilmediğini anlayınca, burayı terkederek, bugünkü Kapıdağı Yarımadasında bulunan Sızık şehrine gelerek burada tıp öğrenimi yapmıştır. Matematik dışında iyi bir hukukçu ve bir de iyi bir doktordu.
Bir ara Mısır’da bulunmuş ve Mısır geleneklerine uyarak sakalını ve kaşlarını traş etmiştir. Dersler vererek geçimini sağlamış ve Atina’ya dönüşünde, hocası Platon, onun şerefine bir şölen düzenlemiştir. Hemşehrileri olan Knidosluların idâri kanunlarını düzenlemek amacıyla Knidos’a gittiğinde, çok iyi karşılanmış ve çok büyük bir saygı görmüştür.
Ciddi astromi çalışmalarıyla da ünlüdür. İlme çok büyük katkılarda bulunmuştur. Zamanının birçoğunu söylevler vermek ve felsefe yaparak geçirmiştir. Çağdaşlarına göre, ilmi yönüyle ve ilmi düşünceleriyle, birkaç yüzyıl ileridedir. Galile ve Newton gibi, gözleme ve deneye dayanmayan fikir, düşünce ve görüşleri hoş görmemiş ve inanmamıştır.
Yeni keşfedilmiş olan bir uzunluk veya buna karşılık gelen sayı bir tam sayı değildi ve tam sayıların oranı ile ifade edilemiyordu; bu durum, felsefelerini tam sayılar üzerine kuran Pythagorasçıları son derece rahatsız etmişti; ya aritmetikle geometri arasındaki koşutluğu reddedecekler veya irrasyonel sayıların varlığını kabul edeceklerdi. Doğru olan yapıldı ve sayı kavramı irrasyonel sayıları da içine alacak şekilde genişletildi. Bu işlem aslen bir Pythagorasçı olan Eudoxos tarafından gerçekleştirildi. Eudoxos, daha sonra Eukleides’in Elementler adlı yapıtının V. ve VI. Kitap’larında işlenecek olan genel oranlar kuramı ile sayı kavramına yeni bir içerik kazandırdı.
Bir doğrunun orta orana göre bölünmesine Altın Oran veya Kutsal Oran denir; Yunanlılar, Eudoxos’un bulmuş olduğu altın oranın bir güzelliği ve kutsallığı olduğuna inanırlardı. İrrasyonellerin anlamlandırılması kadar güç olan diğer bir sorun da eğrilerle sınırlanmış olan alanların veya hacimlerin bulunması sorunuydu. Eudoxos, bu sorunu çözmek için, günümüzde tüketme yöntemi denilen yöntemi geliştirmişti.
Bu yöntemle, bilinen bir büyüklüğün, mesela bir doğrunun uzunluğunun, bir bilinmeyenin, mesela bir eğrinin niteliklerine iyice yaklaşıncaya kadar kendi içinde nasıl bölünebileceğini göstermişti. Archimedes’e göre, Eudoxos, piramitlerin ve konilerin hacimlerinin, sırasıyla eşit tabanlı ve eşit yükseklikli prizmaların ve silindirlerin hacimlerinin üçte birine eşit olduğunu kanıtlamak için bu yöntemden yararlanmıştı.
Eudoxus alan, hacim ve bazı cisimlerin yüzölçümlerini bulmuş ve bunlar hakkında birçok teoremin ispatını vermiştir. Gezegenlerin görünen hareketlerini açıklamış ve bu hareketlerinin dairesel olduklarını söylemiştir. Güneş saatini bulan, bir yılın 365 gün 6 saat olduğunu ortaya koyan ilk bilim adamıdır.
Ayrıca Eudoxos, dairelerin alanlarının, çaplarının karesiyle orantılı olduğunu da göstermişti; uygulamış olduğu yöntem bir bakıma, bir dairenin alanını bulmak için, bu dairenin içine çok sayıda çokgen yerleştirme işlemine benziyordu. Eğrilerle sınırlandırılmış geometrik biçimlerin alanlarının ve hacimlerinin hesaplanmasını olanaklı kılan ve daha sonra Eukleides’in Elementler’inin VII. Kitab’ında derinlemesine geliştirilen bu tüketme yöntemi, integral hesabının temeli olarak kabul edilmektedir.
Eudoxos, kurmuş olduğu ortak merkezli küreler sistemi ile bilimsel astronominin öncülüğünü yapmıştır. Uzun bir süre Mısır’da kalmış olduğu için Mısır astronomisinin inceliklerini, buradayken öğrenmiş olduğu düşünülebilir. Mezopotamya bölgesine ve İran’a gitmemiştir; ancak çeşitli milletlerden insanların toplanmış olduğu Knidos’ta Asya bilimine de âşina olması olanaklıdır.
Bugün matematikte kullandığımız ve adına Archimedes aksiyomu dediğimiz aksiyomu yine Eudoxus’a borçluyuz. Bu da onun ünlü orantılı doğrular kuramıdır. İki doğru parçası veya iki sayı verildiğinde, en küçüğünün her zaman en büyüğünü kapsayan bir tam katı vardır. Bu aksiyom, matematik tarihinde uzun yıllar matematik çağlarının konusu olmuştur.
Mısır’dayken Heliopolis rahiplerinden bilgiler edinmiş ve Heliopolis ile Cercesura arasında bulunan bir gözlemevinde gözlemler yapmıştır. Augustus döneminde bu gözlemevinin etkinliklerini sürdürmekte olduğu bilinmektedir. Eudoxos’un da Knidos’ta bir gözlemevi kurduğu ve burada gözlemler yaptığı söylenmektedir. Hiparkos’un ona atfettiği Ayna ve Phaenomena adlı yapıtlarında bu gözlemleri toplamıştır.
Bilim Adamları
- A. Laurent
- Abdulgafur Acatay
- Abidin Budak
- Adelbert von Chamisso
- Adolf von Baeyer
- Ahmet Mete Işıkara
- Akio Morita (1921 - 1999)
- Albert Einstein
- Albert Einstein
- Albright, William Foxwell
- Alessandro Volta
- Alessandro Volta
- Alexander Graham Bell
- Alexander von Humboldt
- Alexis Bouvard (Fransa, 1767 – 1843)
- Alfred Bernhard Nobel
- Alfred Kastler
- Alfred Lothar Wegener
- Alfred Russel Wallace
- Alfred Stock
- Ali Javan
- Amedeo Avogadro
- Amedeo Avogadro
- Anders Celsius, (1701 – 1744)
- Anders Jonas Ångström (İsveç, 1814 – 1874)
- Andre Marie Ampere
- Annie Jump Cannon (ABD, 1863 – 1941)
- Antoine Lavoisier
- Antonio Abetti (İtalya, 1846 – 1928)
- Antonio Anastasio Volta